欧拉公式(英语:Euler’s formula,又称尤拉公式)是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,对任意实数 xx,都存在:
ejx=cosx+jsinx
其中jj是虚数单位。
由上式,我们可以推导出:
sin?=12j(ej??e?j?)
cos??=12(ej?+e?j?)
证明:
有许多方式可以证明欧拉公式,这里仅用泰勒级数进行证明,其他方式可以参考Wiki欧拉公式
在知乎上看到了Heinrich写的一篇关于傅里叶变换的文章,让我茅塞顿开,惊叹数学的美丽和神奇,文章中介绍了复数的意义,我觉得讲的很好,故记录下来:
虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1的平方根,可是它真正的意义是什么呢?
这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。
我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。